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In this work it is shown that if the underlying category We of a symmetric closed monoidal 

category ^Y is locally presentable, then the Cauchy completion of any small ^Y-category is small. 

Introduction 

It has been observed (e.g. by Kelly in [6]) that for many common monoidal 

categories 3” such as V= Set, Cat, IR’, or AbGp, the Cauchy completion of a small 

‘Vcategory is always small. Although Kelly gives a counterexample in [6] to show 

that this is not true for every closed, complete and cocomplete x it has been conjec- 

tured to be true for those Y such that “YO is locally presentable. In some informal 

notes Kelly [5] proves this conjecture under the additional assumption that the unit 

Z of ‘V is projective for strong epis. Here we drop this assumption and prove that 

the Cauchy completion of a small V/-category is always small when the underlying 

category of V is locally presentable. 

0. Notation 

We use Y (or 9) to denote a complete, cocomplete, symmetric monoidal closed 

category. If & is a small W-category, then 9% will denote the ‘V-functor category 

[v$Op, W] which, by [6, Theorem 4.511, is the free cocompletion of & under small 

colimits. We let Y: d--f P& denote the Yoneda embedding. If F and G are 

elements of P&, then GF will abbreviate 9d(F, G)E WI The identity of F is 

denoted by jF : I+ F’. We let KG denote the canonical morphism: colim(G, YF) ---t 

colim(G, Y)FzGF. If the underlying category of our base monoidal category is a 
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category of presheaves, then we shall denote the base monoidal category by Y. 

Throughout, &’ and 55’ will denote small enriched categories. 

1. Preliminaries 

The equivalence of two Vcategories ,xZ and Z3 in the bicategory W-Mod (of 

modules between “Y-categories as in [9]) is weaker than the equivalence of & and 

.‘?B in W-Cat. This observation has led to the definition of the Cauchy completion 
SW of .xI such that d$= .%I in W-Mod if and only if $d= 22B in W-Cat. Lawvere 

[7] indicated a definition (made explicit in a more general context in [9]) of gd as 

the Vcategory of modules 9 -+ & which possess a right adjoint in WV-Mod. Alter- 

natively, 9& is equivalent to the full subcategory of 9~2 = [dop, W] consisting of 

the small projectives: those F such that PQ(F, -) = (-)F: 9~2 + W preserves small 

colimits (see [6, Section 5.51 or [S]). 

The following example from Kelly [6, Section 5.51 shows that .2?&? need not be 

small when & is. Let CL, be the category of complete lattices with sup-preserving 

functions and let 0 : CL0 x CLp CL, be such that the sup-preserving functions 

A @B + C are the functions A x B + C which are sup-preserving in each variable 

separately. This gives a monoidal category CL with the ordered set (0, l} as unit. 

Claim. The Cauchy completion of a small CL-category A’ is the full subcategory 
of [,A”~, CL] consisting of those functors which are retracts of arbitrary (small) 
products (= coproducts) of representables. In particular, 22& is not small unless ~2 
is equivalent to the one-object CL-category with .x2(*, *) = 0. 

Proof. Clearly, the coproduct of [Ai: iel} in V0 is the same as the product flislA; 

with coprojection defined by 

att a 

L 

ifj=i, 

0 otherwise. 

Consequently, we will denote this coproduct by BiG,Aj. For any family 

{a;: iel} of objects of &, any F:Yl Op+W; and any G:X+??d with I and X 

small: 

Y& @ d(-, Ui), colim(F, G) E @ colim(F, Ga;) = colim 
iel > iel 

Thus arbitrary products of representables, and hence their retracts (by [8, Corollary 

3.61) are small projective and so are in the Cauchy completion of .xZ. 
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Conversely, if F is small projective, the canonical morphism 

KF : colim(F, YF) + FF 

must be an isomorphism. In particular, KF takes some element of its domain to 1,. 

Since colim(F, YF) is a quotient of 

and since each A 0 B is itself a quotient of the complete lattice of all subsets of A x B, 
there is a set I, and an Z-indexed collection of pairs of morphisms {<xi, y;): iEZ} 
with Xi: F+ d(-,a,), and y; : d(-,Oi) * F such that l,=Supi.,(yioXi) : F+ F. 
Thus F is a retract of @iEl&(-, a,). 0 

In the above proof, all that was needed for F to be small projective was that KF 
map something onto the identity of F. A generalization of this idea to arbitrary W 

is given by Gouzou and Grunig [2, Theorem 1.11. 

Proposition 1 (Gouzou and Grunig). For any % if F: dop + W then F is smallpro- 
jective if and only if there is a morphism v, : Z-t colim(F, YF) such that 

Z e 

(*) 

FF. 

Proof. If F is small projective, we may take v, to be K;’ oj,. So suppose ~1 satisfies 

(*). To show that F is small projective, we need only show that (-)F preserves co- 

limits of the form colim(G, Y) for G : dop + W since, for G : X Op + Y and H: X-+ 

.9,&, colim(G, H) E colim(colim(G, H), Y) s colim(G, colim(ZZ, Y)). If G : dop + W; 

then the composite 

109 
GF%GF@Z- GF@ colim(F, YF) z colim(G, YF), 

is readily seen, using (*), to be the inverse of the canonical KG : colim(G, YF) + GF. 

0 

2. The presheaf case 

Throughout this section, we assume that the underlying category of our base 

monoidal category is the category of presheaves Se” for some small category C 

(where S is the category of sets). We denote our base category by 9’= (S”“‘, 0, I). 

If X is a set, let I/X/J denote its cardinality. If h is an Obj(C)-graded set, let llhlj = 
CCEC [lh(c)il and if h is the underlying object function of a functor H: Cop + S, let 
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ilHll= llhli. If ~2 is a small y-category and if f is an Obj(C) x Obj(.&‘)-graded set, let 

llfll = Cad /lfill and if f is the underlying object function of a functor F: dop + 9, 
let IIFII = //fll. Finally, let [ICll d enote the cardinality of the set of arrows of C. 

We now fix a small 5category ~2 and choose a cardinal K such that 

(I) ila=li 5 K. 

(2) /II/l 5 K. 
(3) IlC(-, c)@ C(-, d)ll 5 K for all c, de C. 

(4) I/&Z, b)ll I K for all a, b E ~2 and IIObj(d’)/l SK. 

Since 0 : 9x 9+ 8 is separately cocontinuous, we have, for F, GE 9; 

'c,deC 

FOG= I 
Fc x Gd x (a=(-, c) @ C(-, d)) 

which together with (1) and (3) (and the construction of coends in So”‘) gives: 

(5) If F, GE 9 with l/F11 5 K and I/G(I I K, then llF@ Gil I K. 

Lemma 2. Suppose F: &‘Op --t Bis a functor andf is CI sub Obj(C) x Obj(d)-graded 
set of F with II f I\ I K. Then there is a subfunctor [f] of F, containing f, such that 

Proof. Let U: (9”‘“‘)e >-, S obj(C)xobj(CB) be the ordinary functor taking an 9- 

functor F: dop + 9 to its underlying Obj(C) x Obj(&)-graded set. Then U is a (not 

necessarily fully faithful) inclusion with left adjoint L : Sobj(C)x obW) --t (zF’*~“~)~ 

given by 

Lf = JJ &(-, a) 0 C(-, c) x fat. 
CCC 
UEJd 

If f and Fare as in the statement of the lemma, let J: Lf + F correspond under the 

adjunction L-I U to f H UF and let Lf * [f] *F be the epi-mono factorization 

(calculated pointwise) of J. The natural transformation Lf ++ [f] corresponds by 

adjunction to the inclusion f * U[f 1. Since I( f I( I K, (4) and (5) give I/[ f]li I 
li(Lf )I1 5 K. 0 

Lemma 3. Suppose F: dop+ 9 is a functor, <E B with ll<ll SK, and suppose 
T: r + colim(F, Y’). Then 

r2 colim(F, YF) 

u. iF lKF 
GF - FF 

for some natural transformation v and some inclusion i : G Y-+ F with llGjl< K. 
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Proof. By [6, (3.70)], 

39 

‘aed 

colim(F, YF) = Fu @ d(-, af 

‘a~~4 ‘deC 
E 1 j Fad x (C(-, d) @ &(-, af). 

Y 

Thus there exist functions {tC: c E C} such that for all c E C, 

where e, is the canonical natural transformation. Let f = { nt(t,(x)) E F: XE [c for 

some c E C} and let G = [f] : ._dop + 9. By Lemma 2 and the assumption llrlls K, we 

have i: G-F and jlGII<rc. For all CEC, 

Cc 
TC 

* colim(F, YF)c 

t, 

I T 

colim(i, l), 

u Gad x (a=(-, d) Od(-, a)F)c (eGL - colim(G, YF) c. 

(eG)c”& 
Now let u, be the composite <c - colim(G, YF)c - w’)’ GFc. Then for all 
CEC, 

TC 
T, 

- colim(F, YF)c 

-1 .F 
GFc ) 

‘c 
’ FFc. 

Since each i,” is a monomorphism, the naturality of u follows from the naturality 

of K,T. 0 

In particular, suppose F: A!‘~ + 8 is small projective. Then by Proposition 1 

and Lemma 3 (with r = I) there is a u and an i: G ++ F with /IGIl 5 K such that 
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This immediately gives a factorization 

F 

whence FE G. That is, for any small projective F, IlFll I K. Since ~2 is small, there 

is only a small number of non-isomorphic such F and we have 

Theorem 4. If & is a small Y-category, then the Cauchy completion 9d of & is 
small. 0 

3. The locally-presentable case 

We will now generalize Theorem 4 from 9 to those %‘= (“y,, 0, I, [-, -I) such 

that V0 is locally presentable. For ease of exposition we consider only the case 

where W0 is locally finitely presentable, the generalization to locally presentable 

being entirely straightforward. From Gabriel and Ulmer [l] there is, for such a ‘XK 

a small finitely-cocomplete category C such that VO=Lex(SC”p)= the full sub- 

category of Pop consisting of the left-exact (or finitely continuous) functors. We 

will therefore identify V, with Lex(SCnp) for the rest of this section. 

We let y: C + V0 be the Yoneda embedding seen as landing in “YO and we let 

Y: C + SC” denote the usual Yoneda embedding. From [6, Section 5. lo], F: Cop + S 
is left exact if and only if it is a filtered colimit of representables. Thus, V0 is the 
free filtered-colimit completion of a=. From [l], the inclusion i: W,+ S”’ has a 

reflection (7 : SC”’ + W,. 

Theorem 5. Let K i and o be as above. Then 
(i) There is a unique (up to isomorphism) symmetric closed monoidal structure 

Y(=(ScoP, 0, I, [-,-I)) on S”’ such that i: W, + SC” has a strong monoidal enrich- 
ment i : V+ 9. 

(ii) The inclusion i preserves the internal horns of %‘so that we may view any 

v-category (respectively ?V-functor, respectively Y-natural transformation) as an 
Y-category (respectively Y-functor, respectively Y-natural transformation). Since i 
preserves limits, limits and colimits in a “Y-category are the same as for the cor- 
responding P-category. 

(iii) There is a strong monoidal enrichment (a, a’, d) : 8+ Yof a. This makes 7 
a strong monoidal reflective subcategory of 9. 

(iv) There is an isomorphism [ax, V] = [X, V] natural in XE S’Op and VE ‘Y&j. 
(v) The ordinary functor a : S ‘OP ---* “Y. is the underlying functor of an Y-functor 

a:9-+% 
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Proof. (i) Since @ : V, x W. + “Y. is separately cocontinuous and since i : W, -+ SC”’ 

preserves filtered colimits, the composite i@ preserves filtered colimits separately 

in both variables. We let S-Coc[Sc”P~Sc”P ,ScoP] denote the full subcategory of 

[Pop x S”“4 Sc”“] consisting of the separately cocontinuous functors and we let 

S-FilCoc[VO x VO, Stop] denote the full subcategory of [^v, x We, So”‘] consisting of 

the functors which preserve filtered colimits separately in both variables. By a result 

of Im and Kelly [3], and its generalization in [4] to arbitrary classes of weights for 

colimits we get: 

(a) [a= x C), So”“] =S-coc[S~“p x So”“, SC”“], 

(b) [C x C, SC”“] = S-FilCoc[q x “y,, S’“‘]. 

These equivalences are given, from left to right by left Kan extension along Yx Y 

(in (a)) and y xy (in (b)) and from right to left by restriction along Yx Y (in (a)) 

and yxy (in (b)). Thus, if we first restrict i@ ES-FilC~c[“t/~x VO,Scop] along 

y xy : C x C + V, x If, and then take its left Kan extension along Y x Y: C x C + 
SO?” x SC”” we get a separately cocontinuous tensor product on SC”” (which we will 

also denote by 0). This tensor product is, by [6, Theorem 4.471, the left Kan exten- 

sion of i@ along ix i and restricts (to within isomorphism) to the tensor product 

of 7% 

The equivalences (a) and (b), together with their one- and three-dimensional 

analogues allow us to induce the symmetry, unity and associativity isomorphisms 

of “y to 9”“. Verification that these isomorphisms satisfy the coherence axioms 

for a monoidal category is an easy exercise which gives a monoidal structure 

9y?= (So”‘, @,I) on Sc”“. This structure is unique such that @ is separately cocon- 

tinuous and such that i preserves @ and I. Since the tensor product of 9 is separate- 

ly cocontinuous, 9 is closed. 

(ii) Let {-,-} denote the internal-horn functor of 9. For U, V, WE ?y; 

s~““(w,{u,v})~s~““(wou,I/)~~~(wou,I/)~.(w,[u,v])~s~““(w,[u,v]). 

Since ye is dense in So”“, [U, V] 3 {U, V>, i.e. the strong monoidal inclusion 

i : v, --f Pop preserves internal horns. Henceforth, we will let [-,-I denote the 

internal-horn functor in 9 as well as in ?? 

(iv) For U, VE vand XE g S’““(U, [X, V])ES~““(X, [U, V])sS’““(aX, [U, V])C 

S’“‘(U, [OX, V]). Again, since W. is dense in Sc”“, [X, V] s [OX, V]. 

(iii)For X,YE~ and VEX [~(X@Y),~]E[X@YV]G[X,[Y,V]]E[[~X, 

[aY, V]] g [OX@ aY, V], which gives a natural isomorphism d, y: 0x0 oY E 

a(X@ Y). The counit of the adjunction o i i gives an isomorphism a0 : oZleZ and 

(a, a’, r_?) : P-+ Y is a strong monoidal enrichment of o. 
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(v) It is easy to check that o is the underlying functor of an 9-functor o : Y+ P’ 

with 

where q : lst.“p -+ io is the unit of the adjunction (T -I i. 0 

Of course, limits in ^Ye are calculated as in SCop, and any colimit in “Ye is given 

by taking the reflection of the corresponding colimit in So”. We reserve the usual 

notation for colimits, (including coproducts and coends) for the colimits as calculated 

in S ‘Op. We will write o(colim(F, G)) to denote the F-weighted colimit of G as 

calculated in We. From now on we will identify al/ with V for I/E W, since these are 

naturally isomorphic. 

Letting Fin C denote the finite-colimit closure of C in SC”, we have, by [6, Pro- 

position 5.411 that So” is the free filtered-colimit completion of Fin C. Since 

i: nYg+SCop preserves filtered colimits, ia : SC” + SC” is the left Kan extension of 

its restriction to Fin C. 

Thus a(G) = lrE Fin o o(c) x SCop(& G). Since 

a(t) = C(-, colim([, 1,)) for <E Fin C. 

y : C -+ We preserves finite colimits, 

Theorem 6. If V, is locally (finitely) presentable and if d is a small V-category, 
then the Cauchy completion 22& of d is also small. 

Proof. Let ~2 be a small W-category and let K be as in Section 2. If F, G : ~2’~ + 9, 

GF will denote [dop, 9](F, G) = laECPI [Fa, Ga] E 9 which is isomorphic to 

[AZ’~;W](F, G) if F and G land in ‘5’ since limits and internal horns in Y are 

preserved by the inclusion i: Y+ 9’. Note that any 9-functor F: dop + W is a 

Vfunctor. 

By Proposition 1, if F: ~2’~ + V is small projective, then there is a morphism 9 

in Wsuch that 

rcFinC 

* a(colim(F, YF)) G 

:\ cp J 

o(t) x So”“(<, colim(F, YF)). 

0 (KF) 

FF 
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For each c E a3 we can assign to each h E Zc a triple & E Fin 6, g,(h) E o(&)c and 

Th : c!$ + colim(F, YF) (representing the value y?,(h)) such that there is a commutative 

diagram of functions (note that g may not be a natural transformation) 

Ic 

CTh):’ 
U a(&)c ’ a(colim(F, YF))c. 

h E Ic 

Clearly l/[II__ f -= K or all c E Fin C. By Lemma 3 there is, for each c E C and h E Zc, 

a functor Gh : dop + 9 with IIGh /I I K, an inclusion ih : G,, H F and a morphism uh 

such that 

t-h 

Th 
-----+ colim(F, YF) 

Hence, for each CE C 

~(:A PC 

h;c Ott-h) c c o(colim(F, YF))c 

i 

dK~)c 

u o(,$)c (a(ihF'c)h ,FF~. 

h EIC 

Since Z and C are bounded by K there is a subfunctor GO : dop -+ 9 of F with 

/IG,/J I K which contains each Gh for h E Ic, c E C. We have inclusions 

Go 

for h E Zc, c E 6. Since o is an 9-functor, the composite 00 Go : dop -+ Y is an 

$functor between two Vkategories and is therefore a “Y-functor. In the ordinary 

category [AZ”~, “Y], let o 0 Go A G & F be a strong epi-mono factorization of 
00 i. : o 0 Go + F. This exists since .&(A, B) @ - : V. + W. preserves strong epi- 

morphisms. Then 
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Now let y, be the composite 

where the last arrow is derived from the composite of the three lower arrows in the 

previous diagram. Then we have (since i: W. - SC” preserves monomorphisms) 

v)c 
Ic - a(colim(F, Y’))c 

(mF), L 

GFc - FFc 

and the naturality of ,u follows from that of a(K,)p. Hence, as in the presheaf 

case, FE:. Since llGoil _ <lc and since, by [l], any object of Y has only a small 

number of quotients, there can only be a small number of such F. 0 

In [9], Street defines the Cauchy completion ~?2& of d where A? is a small 

category enriched over a bicategory W such that W and Wop admit right liftings. 

Suppose W(U, V) is locally representable for all objects U and I/ of W. Then the 

proof here can be modified to show that for small d, the set of objects in 9~2 over 

any given object U of %+ is small. In particular, if Obj(W) is small, then so is 3&. 
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